DISCUSSION OF "THE DEMAND FOR GOVERNMENT DEBT"

Egemen Eren, Andreas Schrimpf, Fan Dora Xia

Discussed by Zhiyu Fu WashU Olin

OVERVIEW

• Summary of the paper:

OVERVIEW

- Summary of the paper:
 - ► Estimates the marginal absorbing capacity for new public debt by sectors

- Summary of the paper:
 - Estimates the marginal absorbing capacity for new public debt by sectors
 - ► Estimates heterogeneous demand elasticities for each sector

- Summary of the paper:
 - ► Estimates the marginal absorbing capacity for new public debt by sectors
 - ► Estimates heterogeneous demand elasticities for each sector
 - ► Study counterfactual price movements under QT scenarios

- Summary of the paper:
 - Estimates the marginal absorbing capacity for new public debt by sectors
 - ► Estimates heterogeneous demand elasticities for each sector
 - ► Study counterfactual price movements under QT scenarios
- Overall review:

OVERVIEW

- Summary of the paper:
 - ► Estimates the marginal absorbing capacity for new public debt by sectors
 - ► Estimates heterogeneous demand elasticities for each sector
 - ► Study counterfactual price movements under QT scenarios
- Overall review:
 - ► An important step advancing our understanding of government bond markets

- Summary of the paper:
 - ► Estimates the marginal absorbing capacity for new public debt by sectors
 - Estimates heterogeneous demand elasticities for each sector
 - ► Study counterfactual price movements under QT scenarios
- Overall review:
 - ► An important step advancing our understanding of government bond markets
 - Completely agree with the research questions and the direction

- Summary of the paper:
 - ► Estimates the marginal absorbing capacity for new public debt by sectors
 - Estimates heterogeneous demand elasticities for each sector
 - ► Study counterfactual price movements under QT scenarios
- Overall review:
 - ► An important step advancing our understanding of government bond markets
 - Completely agree with the research questions and the direction
 - ► Mostly agree with the findings

- Summary of the paper:
 - ► Estimates the marginal absorbing capacity for new public debt by sectors
 - Estimates heterogeneous demand elasticities for each sector
 - ► Study counterfactual price movements under QT scenarios
- Overall review:
 - ► An important step advancing our understanding of government bond markets
 - ► Completely agree with the research questions and the direction
 - Mostly agree with the findings
 - Some quibbles on methodologies

- Summary of the paper:
 - Estimates the marginal absorbing capacity for new public debt by sectors
 - Estimates heterogeneous demand elasticities for each sector
 - ► Study counterfactual price movements under QT scenarios
- Overall review:
 - ► An important step advancing our understanding of government bond markets
 - Completely agree with the research questions and the direction
 - ► Mostly agree with the findings
 - Some quibbles on methodologies
- This discussion: clarifying assumptions behind methodologies

MAIN RESULT 1: WHO ABSORBS THE NEW SUPPLY?

- Estimate the "marginal responses" by each sector:
 - ► The Fang, Hardy, and Lewis (2022) methodology

$$\frac{H_t^{s,j} - H_{t-1}^{s,j}}{D_{t-1}^j} = \alpha^{s,j} + \beta^{s,j} \frac{D_t^j - D_{t-1}^j}{D_{t-1}^j} + \varepsilon_t^{s,j},$$

VARIABLES	(1) CB	(2) ROW	(3) PF	(4) IF	(5) Banks	(6) SLG	(7) MMF	(8) HH	(9) IC	(10) Other
(0.02)	(0.06)	(0.03)	(0.01)	(0.06)	(0.03)	(0.03)	(0.03)	(0.01)	(0.02)	
QE * Pct. Ch. Gov. Debt	0.08**	0.31***	0.15***	0.07***	0.10***	-0.02*	0.06	0.17**	0.02***	0.06***
	(0.04)	(0.05)	(0.06)	(0.01)	(0.02)	(0.01)	(0.06)	(0.07)	(0.00)	(0.01)
Post-Covid * Pct. Ch. Gov. Debt	0.45***	0.07***	0.01	-0.00	0.08***	0.05***	0.35***	-0.10***	0.01***	0.08***
	(0.04)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.02)	(0.02)	(0.00)	(0.00)
Observations	283	283	283	283	283	283	283	283	283	283
R-squared	0.39	0.33	0.18	0.13	0.23	0.06	0.42	0.14	0.31	0.18

• The coefficient β captures the linear, contemporaneous response at the quarterly (yearly) frequency

$$\frac{H_t^{s,j} - H_{t-1}^{s,j}}{D_{t-1}^j} = \alpha^{s,j} + \beta^{s,j} \frac{D_t^j - D_{t-1}^j}{D_{t-1}^j} + \varepsilon_t^{s,j},$$

• The coefficient β captures the linear, contemporaneous response at the quarterly (yearly) frequency

$$\frac{H_t^{s,j} - H_{t-1}^{s,j}}{D_{t-1}^j} = \alpha^{s,j} + \beta^{s,j} \frac{D_t^j - D_{t-1}^j}{D_{t-1}^j} + \varepsilon_t^{s,j},$$

• Different from a model-free estimate of the regime-average marginal responses:

$$\beta^{avg,s} = \frac{H_T^s - H_{t_0}^s}{D_T^s - D_{t_0}^s}$$

• The coefficient β captures the linear, contemporaneous response at the quarterly (yearly) frequency

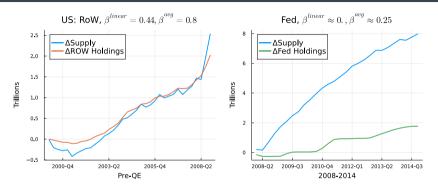
$$\frac{H_t^{s,j} - H_{t-1}^{s,j}}{D_{t-1}^j} = \alpha^{s,j} + \beta^{s,j} \frac{D_t^j - D_{t-1}^j}{D_{t-1}^j} + \varepsilon_t^{s,j},$$

• Different from a model-free estimate of the regime-average marginal responses:

$$\beta^{avg,s} = \frac{H_T^s - H_{t_0}^s}{D_T^s - D_{t_0}^s}$$

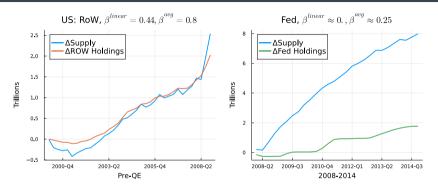
► If the linear model holds, two estimates should be close (they mostly are!)

• The coefficient β captures the linear, contemporaneous response at the quarterly (yearly) frequency


$$\frac{H_t^{s,j} - H_{t-1}^{s,j}}{D_{t-1}^j} = \alpha^{s,j} + \beta^{s,j} \frac{D_t^j - D_{t-1}^j}{D_{t-1}^j} + \varepsilon_t^{s,j},$$

• Different from a model-free estimate of the regime-average marginal responses:

$$\beta^{avg,s} = \frac{H_T^s - H_{t_0}^s}{D_T^s - D_{t_0}^s}$$


- ► If the linear model holds, two estimates should be close (they mostly are!)
- ▶ When they differ, it informs us the applicability of the linear model

(CHERRY-PICKED) DIFFERENCES BETWEEN LINEAR ESTIMATES VS. AVERAGE ESTIMATES

• RoW: Absorbs 80% of new Treasury issuance before 2008, vs. 0.4 from the linear estimate

(CHERRY-PICKED) DIFFERENCES BETWEEN LINEAR ESTIMATES VS. AVERAGE ESTIMATES

- RoW: Absorbs 80% of new Treasury issuance before 2008, vs. 0.4 from the linear estimate
- Fed: Absorbs 25% of new Treasury issuance between 08-15, but the linear response is close to zero for this sample

• Why there are differences?

- Why there are differences?
 - Delayed responses

- Why there are differences?
 - Delayed responses
 - ► Some sectors act slower than others

- Why there are differences?
 - Delayed responses
 - ► Some sectors act slower than others
 - ► Nonlinear responses: e.g. the Fed

- Why there are differences?
 - Delayed responses
 - ► Some sectors act slower than others
 - ► Nonlinear responses: e.g. the Fed
- When is the linear model useful (and when not)?

- Why there are differences?
 - Delayed responses
 - ► Some sectors act slower than others
 - ► Nonlinear responses: e.g. the Fed
- When is the linear model useful (and when not)?
 - ► Suitable for short-term responses to small changes

When is the Linear Model Appropriate?

- Why there are differences?
 - Delayed responses
 - ► Some sectors act slower than others
 - ► Nonlinear responses: e.g. the Fed
- When is the linear model useful (and when not)?
 - Suitable for short-term responses to small changes
 - e.g., the QT counterfactuals the authors discuss in the later sections

- Why there are differences?
 - Delayed responses
 - ► Some sectors act slower than others
 - ► Nonlinear responses: e.g. the Fed
- When is the linear model useful (and when not)?
 - Suitable for short-term responses to small changes
 - e.g., the QT counterfactuals the authors discuss in the later sections
 - Not suitable for long-term debt sustainability analysis

$$\log\left(H_t^s\right) - \log\left(H(0)_t^s\right) = \alpha^s + \beta_1^s \Upsilon_t^8 + \beta_2^{s'} \mathbf{X_t} + t + t^2 + \eta_t^s.$$

• Estimate the demand elasticity β_1^s in:

$$\log\left(H_t^s\right) - \log\left(H(0)_t^s\right) = \alpha^s + \beta_1^s Y_t^8 + \beta_2^{s'} \mathbf{X_t} + t + t^2 + \eta_t^s.$$

• Reasonable estimates: A 1% inflow into the Treasury market lead to

$$\log\left(H_t^s\right) - \log\left(H(0)_t^s\right) = \alpha^s + \beta_1^s Y_t^s + \beta_2^{s'} \mathbf{X_t} + t + t^2 + \eta_t^s.$$

- Reasonable estimates: A 1% inflow into the Treasury market lead to
 - ► an 8.7bps decrease in the 8-year bonds

$$\log\left(H_t^s\right) - \log\left(H(0)_t^s\right) = \alpha^s + \beta_1^s Y_t^s + \beta_2^{s'} \mathbf{X}_t + t + t^2 + \eta_t^s.$$

- Reasonable estimates: A 1% inflow into the Treasury market lead to
 an 8.7bps decrease in the 8-year bonds
- \bullet Methodology: Instrumenting Y_t^8 using monetary policy surprises

$$\log\left(H_t^s\right) - \log\left(H(0)_t^s\right) = \alpha^s + \beta_1^s Y_t^s + \beta_2^{s'} \mathbf{X_t} + t + t^2 + \eta_t^s.$$

- Reasonable estimates: A 1% inflow into the Treasury market lead to
 - ► an 8.7bps decrease in the 8-year bonds
- Methodology: Instrumenting Y_t^8 using monetary policy surprises
 - ▶ Potentially issues: monetary policy shock directly affects the latent demand

• Assume the supply is fixed. Consider the following model for demand:

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + \lambda_i \times mp_t + \varepsilon_{i,t},$$

$$\Delta q_{S,t} \equiv \sum S_i \Delta q_{i,t} = 0 \implies \Delta p_t = \frac{1}{\zeta_S} (\lambda_S mp_t + \varepsilon_{S,t})$$

where $X_S \equiv \sum_i S_i X_i$ is the size-weighted aggregation

• Assume the supply is fixed. Consider the following model for demand:

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + \lambda_i \times mp_t + \varepsilon_{i,t},$$

$$\Delta q_{S,t} \equiv \sum S_i \Delta q_{i,t} = 0 \implies \Delta p_t = \frac{1}{\zeta_S} (\lambda_S mp_t + \varepsilon_{S,t})$$

where $X_S \equiv \sum_i S_i X_i$ is the size-weighted aggregation

• If we use mp_t as an instrument for Δp_t :

$$\hat{\zeta}_{i} = -\frac{Cov(\Delta q_{i,t}, mp_{t})}{Cov(\Delta p_{t}, mp_{t})} = \zeta_{i} - (\zeta_{S}) \frac{\lambda_{i}}{\lambda_{S}}$$

• Assume the supply is fixed. Consider the following model for demand:

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + \lambda_i \times mp_t + \varepsilon_{i,t},$$

$$\Delta q_{S,t} \equiv \sum S_i \Delta q_{i,t} = 0 \implies \Delta p_t = \frac{1}{\zeta_S} (\lambda_S mp_t + \varepsilon_{S,t})$$

where $X_S \equiv \sum_i S_i X_i$ is the size-weighted aggregation

• If we use mp_t as an instrument for Δp_t :

$$\hat{\zeta}_{i} = -\frac{Cov(\Delta q_{i,t}, mp_{t})}{Cov(\Delta p_{t}, mp_{t})} = \zeta_{i} - (\zeta_{S}) \frac{\lambda_{i}}{\lambda_{S}}$$

 $ightharpoonup \zeta_i$ is correctly identified only for sectors with $\lambda_i = 0$

• Assume the supply is fixed. Consider the following model for demand:

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + \lambda_i \times mp_t + \varepsilon_{i,t},$$

$$\Delta q_{S,t} \equiv \sum S_i \Delta q_{i,t} = 0 \implies \Delta p_t = \frac{1}{\zeta_S} (\lambda_S mp_t + \varepsilon_{S,t})$$

where $X_S \equiv \sum_i S_i X_i$ is the size-weighted aggregation

• If we use mp_t as an instrument for Δp_t :

$$\hat{\zeta}_{i} = -\frac{Cov(\Delta q_{i,t}, mp_{t})}{Cov(\Delta p_{t}, mp_{t})} = \zeta_{i} - (\zeta_{S}) \frac{\lambda_{i}}{\lambda_{S}}$$

- $ightharpoonup \zeta_i$ is correctly identified only for sectors with $\lambda_i = 0$
- ► The estimated aggregate elasticity will always be zero $\sum_i S_i \hat{\zeta}_i = 0$

FAST VS. SLOW MONEY ARGUMENT

• Authors only estimate the elasticities for the "slow money" investors

- Authors only estimate the elasticities for the "slow money" investors
 - ► Idea: the high-frequency shock only captures the shift in demand of the "fast money"

- Authors only estimate the elasticities for the "slow money" investors
 - ► Idea: the high-frequency shock only captures the shift in demand of the "fast money"
- Formally, consider two group of investors, *F* ast and *S*low. Within the 15-min window, *S*low investors have no response:

$$\Delta q^F_{i,15min} = -\zeta^F_i \Delta p_{15min} + \lambda^F_i \times mp_{15min}$$

$$\Delta q^S_{i,15min} = 0$$

$$\Longrightarrow \Delta p_{15min} = \frac{\lambda^F_S}{\zeta^F_S} mp_{15min}$$

- Authors only estimate the elasticities for the "slow money" investors
 - ► Idea: the high-frequency shock only captures the shift in demand of the "fast money"
- Formally, consider two group of investors, *F* ast and *S*low. Within the 15-min window, *S*low investors have no response:

$$\begin{array}{ll} \Delta q^F_{i,15min} &= -\zeta^F_i \Delta p_{15min} + \lambda^F_i \times m p_{15min} \\ \Delta q^S_{i,15min} &= 0 \end{array} \right\} \implies \Delta p_{15min} = \frac{\lambda^F_S}{\zeta^F_S} m p_{15min}$$

• Then Δp_{15min} is used to instrument Δp_t at the quarterly frequency

- Authors only estimate the elasticities for the "slow money" investors
 - ► Idea: the high-frequency shock only captures the shift in demand of the "fast money"
- Formally, consider two group of investors, *F* ast and *S*low. Within the 15-min window, *S*low investors have no response:

$$\begin{array}{ll} \Delta q^F_{i,15min} &= -\zeta^F_i \Delta p_{15min} + \lambda^F_i \times m p_{15min} \\ \Delta q^S_{i,15min} &= 0 \end{array} \right\} \implies \Delta p_{15min} = \frac{\lambda^F_S}{\zeta^F_S} m p_{15min}$$

- Then Δp_{15min} is used to instrument Δp_t at the quarterly frequency
- But it is a linear transformation of mp_{15min} ! The same critique still applies.

- Authors only estimate the elasticities for the "slow money" investors
 - ► Idea: the high-frequency shock only captures the shift in demand of the "fast money"
- Formally, consider two group of investors, *F* ast and *S*low. Within the 15-min window, *S*low investors have no response:

$$\begin{array}{ll} \Delta q^F_{i,15min} &= -\zeta^F_i \Delta p_{15min} + \lambda^F_i \times m p_{15min} \\ \Delta q^S_{i,15min} &= 0 \end{array} \right\} \implies \Delta p_{15min} = \frac{\lambda^F_S}{\zeta^F_S} m p_{15min}$$

- Then Δp_{15min} is used to instrument Δp_t at the quarterly frequency
- But it is a linear transformation of mp_{15min} ! The same critique still applies.
- The correct identification assumption is not that other sectors react *slowly*, but that they do not react $(\lambda_{i,mp} = 0)$.

BRIDGE THE TWO RESULTS

 Currently the marginal absorber analysis and the elasticity estimation are disconnected

Bridge the Two Results

- Currently the marginal absorber analysis and the elasticity estimation are disconnected
- They can be studied under the same framework

BRIDGE THE TWO RESULTS

- Currently the marginal absorber analysis and the elasticity estimation are disconnected
- They can be studied under the same framework
- Add inelastic supply to the framework above:

$$\begin{array}{ll} \Delta q_{i,t} & = -\zeta_i \Delta p_t + \varepsilon_{i,t} \\ \Delta p_t & = \frac{1}{\zeta_S} \left(\varepsilon_{S,t} - \boldsymbol{u}_t^{supply} \right) \end{array} \right\} \implies \Delta q_{i,t} = \frac{\zeta_i}{\zeta_S} \boldsymbol{u}_t^{supply} - \frac{\zeta_i}{\zeta_S} \varepsilon_{S,t} + \boldsymbol{u}_{i,t}$$

The marginal absorber exercise can be viewed as a reduced-form regression for the underlying linear demand model.

• An important contribution on the demand for government bonds

- An important contribution on the demand for government bonds
- My suggestions:

- An important contribution on the demand for government bonds
- My suggestions:
 - ▶ Be careful drawing implications from the marginal absorber results

- An important contribution on the demand for government bonds
- My suggestions:
 - ▶ Be careful drawing implications from the marginal absorber results
 - Clarify (and possibly quantify) the potential bias using MP shocks as instruments

- An important contribution on the demand for government bonds
- My suggestions:
 - ▶ Be careful drawing implications from the marginal absorber results
 - Clarify (and possibly quantify) the potential bias using MP shocks as instruments
 - ► Use a unified framework to bridge two sets of results

- An important contribution on the demand for government bonds
- My suggestions:
 - ▶ Be careful drawing implications from the marginal absorber results
 - Clarify (and possibly quantify) the potential bias using MP shocks as instruments
 - Use a unified framework to bridge two sets of results
- Good job!

REFERENCES

REFERENCES

